Zebrafish in developmental toxicity study

Jingying Hu Shanghai Institute of Planned Parenthood Research 14th,September 2018 Introduction of zebrafish

Zebrafish and teratogenic studies

 Compared zebrafish with mammals in teratogenic studies

* Zebrafish and DBP

Zebrafish (Danio rerio)

- * AB, from a pet shop in Oregon
- HK, from a HongKong fish dealer
- * TU, from a Tuebingen pet shop
- * WIK, polymorphic TU line

Development stage of zebrafish

Zygote period: 0- hpf (hour post fertilization)

Cleavage period: 0.75- hpf

Blastula period: 2.25- hpf

Gastrula period: 5.25- hpf

Segmentation period: 10.3- hpf

Pharyngula period: 24- hpf——Hatching period: 48- hpf

Advantage

* Conserved

- * Vertebrate
- a full range of cyp genes demonstrate a strong evolutionary relationship

Simple

- * High fecundity
- External fertilization and development, chemicals can be added to the medium
- * Small size, suitable for high-throughput screening

Transparent

- From fertilization to larval stages
- unpigmented mutant Casper
- * Transgenic as surveillance tools

Fish toxic test guideline

- OECD guidelines for the testing of chemicals
 - * 210: Fish early-life stage toxicity test
 - * 215: Fish juvenile growth test
 - * 229: Fish short term reproduction assay
 - * 236: Fish embryo acute toxicity (FET) test
 - 305: Bioaccumulation in fish aqueous and dietary exposure

* EPA

- * OPPTS 850.1075: Fish acute toxicity test
- * OPPTS 850.1400: Fish early-life stage toxicity test

Pubmed database of "zebrafish and toxicity"

Zebrafish teratogenic

- External findings
 - * Anatomical microscope
- Visceral findings
 - * Transgenic organ, whole mount of in situ hybridization (Immunofluorescence)
- Skeletal findings
 - * Alcian Blue and (or) Alizarin Red

External findings

Visceral findings

Skeletal findings

Zebrafish and pesticides

- * Until July of 2017, there are 850 publications when searched with key words: zebrafish and pesticide and terato* not environmen*
- * There are 48 active substances (AS) mentioned in these papers.
- * Check each AS in ECHA and JMPR to get the teratogenic information of mammals.

Teratogenic ASs in both zebrafish and mammals

* 2,4-D.---herbicide /preservative

- * In zebrafish
 - * 72hpf, 25mg/l: reduced body length, pericardial edema, The expression of amhc and vmhc were not restricted in atrium and ventricle
- * In rat
 - * gavage, 75mg/kg bw, sternbrae malaligned

Chlopyrifos---pesticide /insecticide

- * In zebrafish
 - * 0.4mg/l: curved spines, shortened tails (4dpf), shorten segment (72hpf)
- * In mouse
 - * gavage, 25mg/kg bw, delayed ossification;

* Clomazone---herbicide

* In zebrafish

 120hpf: edema (13.4mg/l), lack in gas bladder formation (6.7mg/l), craniofacial deformations (26.8mg/l), tail tip (53.5mg/l) and spine deformations (3.4mg/l)

* In rat

 gavage, 300mg/kg bw, delayed ossification, increased hydroureter

* Carbendazim---fungicide

* In zebrafish

* 72hpf: pericardial edema, head and spine deformities (1.41mg/l), eye deformities (1.53mg/l), tail deformities (1.66mg/l); 96hpf: pericardial edema (1.19mg/l), spine deformity (1.3mg/l).

* In rat

- gavage, 30mg/kg bw, anasarca. exencephalia, meningocele and an abbreviated tail but microphthalmia, internal hydrocephalus, malformations of the ribs, the spine (cleft vertebrae), the sternum, the heart and the lungs;
- * diet, 6000ppm =371mg/kg bw, supernumerary ribs

* In rabbit

* the thoracic vertebrae, and the cervical vertebrae.

Tab. 3 LC_{50} , EC_{50} and TI values as derived from the concentration-response curves for 9 compounds at the 144 hpf time points and comparison of classification of compounds based on animal and human versus zebrafish data

Compound	IC_{50} / $mol \cdot L^{-1}$	EC ₅₀ / mol•L ⁻¹	TI	Mammalian classification [7 -10]	Human data classification	Zebrafish classification
ATRA	2.96 ×10 ⁻⁸	2.86 ×10 ⁻⁹	10.35	Т	Т	Т
Methimazole	3.28×10^{-3}	1.13×10^{-3}	2.91	Т	Т	Т
Indometacin	1.63 × 10 ⁻⁴	9.74×10^{-4}	1.67	Т	Т	Т
Acetaminophen	2.84×10^{-3}	1.37×10^{-3}	2.07	Т	Т	Т
Methotrexate	7.52×10^{-2}	5.74×10^{-2}	1.31	Т	Т	Т
5-Fluorouracil	4.28×10^{-5}	5.15×10^{-6}	8.31	Т	Т	Т
Ascorbic acid	/	/	/	N	N	N
Penicillin G	/	/	/	N	N	N
Isoniazid	/	/	/	N	N	N
Saccharin	1	/	/	N	N	N

Teratogens (T) and non-teratogens (N) was classified by the TI obtained.

Zebrafish and Dibutyl phthalate (DBP)

- * DBP is an environmental endocrine disrupters (EEDs), used primarily as plasticizers to impart flexibility to polyvinylchloride plastics.
- DBP disturb Sertoli Cell function, disrupt Sertoli-Germ celll interaction, reduce sperm production.
- DBP disturb Leydig Cell function, reduce testosterone.

Zebrafish embryo exposure of DBP

Disterb primordial germ cells (PGCs) distrubution

Conclusion

Some of the chemicals induce same or at least similar teratogenic effect in zebrafish and in mammals.

* Zebrafish could be a proper candidate to be one of the model organisms in devtox database.

THANK YOU!