Zebrafish in developmental toxicity study Jingying Hu Shanghai Institute of Planned Parenthood Research 14th,September 2018 Introduction of zebrafish Zebrafish and teratogenic studies Compared zebrafish with mammals in teratogenic studies * Zebrafish and DBP ## Zebrafish (Danio rerio) - * AB, from a pet shop in Oregon - HK, from a HongKong fish dealer - * TU, from a Tuebingen pet shop - * WIK, polymorphic TU line ## Development stage of zebrafish Zygote period: 0- hpf (hour post fertilization) Cleavage period: 0.75- hpf Blastula period: 2.25- hpf Gastrula period: 5.25- hpf Segmentation period: 10.3- hpf Pharyngula period: 24- hpf——Hatching period: 48- hpf ## Advantage #### * Conserved - * Vertebrate - a full range of cyp genes demonstrate a strong evolutionary relationship #### Simple - * High fecundity - External fertilization and development, chemicals can be added to the medium - * Small size, suitable for high-throughput screening #### Transparent - From fertilization to larval stages - unpigmented mutant Casper - * Transgenic as surveillance tools ## Fish toxic test guideline - OECD guidelines for the testing of chemicals - * 210: Fish early-life stage toxicity test - * 215: Fish juvenile growth test - * 229: Fish short term reproduction assay - * 236: Fish embryo acute toxicity (FET) test - 305: Bioaccumulation in fish aqueous and dietary exposure #### * EPA - * OPPTS 850.1075: Fish acute toxicity test - * OPPTS 850.1400: Fish early-life stage toxicity test ## Pubmed database of "zebrafish and toxicity" ## Zebrafish teratogenic - External findings - * Anatomical microscope - Visceral findings - * Transgenic organ, whole mount of in situ hybridization (Immunofluorescence) - Skeletal findings - * Alcian Blue and (or) Alizarin Red ## **External findings** ## Visceral findings ## Skeletal findings ## Zebrafish and pesticides - * Until July of 2017, there are 850 publications when searched with key words: zebrafish and pesticide and terato* not environmen* - * There are 48 active substances (AS) mentioned in these papers. - * Check each AS in ECHA and JMPR to get the teratogenic information of mammals. # Teratogenic ASs in both zebrafish and mammals #### * 2,4-D.---herbicide /preservative - * In zebrafish - * 72hpf, 25mg/l: reduced body length, pericardial edema, The expression of amhc and vmhc were not restricted in atrium and ventricle - * In rat - * gavage, 75mg/kg bw, sternbrae malaligned ### Chlopyrifos---pesticide /insecticide - * In zebrafish - * 0.4mg/l: curved spines, shortened tails (4dpf), shorten segment (72hpf) - * In mouse - * gavage, 25mg/kg bw, delayed ossification; #### * Clomazone---herbicide #### * In zebrafish 120hpf: edema (13.4mg/l), lack in gas bladder formation (6.7mg/l), craniofacial deformations (26.8mg/l), tail tip (53.5mg/l) and spine deformations (3.4mg/l) #### * In rat gavage, 300mg/kg bw, delayed ossification, increased hydroureter #### * Carbendazim---fungicide #### * In zebrafish * 72hpf: pericardial edema, head and spine deformities (1.41mg/l), eye deformities (1.53mg/l), tail deformities (1.66mg/l); 96hpf: pericardial edema (1.19mg/l), spine deformity (1.3mg/l). #### * In rat - gavage, 30mg/kg bw, anasarca. exencephalia, meningocele and an abbreviated tail but microphthalmia, internal hydrocephalus, malformations of the ribs, the spine (cleft vertebrae), the sternum, the heart and the lungs; - * diet, 6000ppm =371mg/kg bw, supernumerary ribs #### * In rabbit * the thoracic vertebrae, and the cervical vertebrae. Tab. 3 LC_{50} , EC_{50} and TI values as derived from the concentration-response curves for 9 compounds at the 144 hpf time points and comparison of classification of compounds based on animal and human versus zebrafish data | Compound | IC_{50} / $mol \cdot L^{-1}$ | EC ₅₀ / mol•L ⁻¹ | TI | Mammalian classification [7 -10] | Human data classification | Zebrafish classification | |----------------|--------------------------------|--|-------|----------------------------------|---------------------------|--------------------------| | ATRA | 2.96 ×10 ⁻⁸ | 2.86 ×10 ⁻⁹ | 10.35 | Т | Т | Т | | Methimazole | 3.28×10^{-3} | 1.13×10^{-3} | 2.91 | Т | Т | Т | | Indometacin | 1.63 × 10 ⁻⁴ | 9.74×10^{-4} | 1.67 | Т | Т | Т | | Acetaminophen | 2.84×10^{-3} | 1.37×10^{-3} | 2.07 | Т | Т | Т | | Methotrexate | 7.52×10^{-2} | 5.74×10^{-2} | 1.31 | Т | Т | Т | | 5-Fluorouracil | 4.28×10^{-5} | 5.15×10^{-6} | 8.31 | Т | Т | Т | | Ascorbic acid | / | / | / | N | N | N | | Penicillin G | / | / | / | N | N | N | | Isoniazid | / | / | / | N | N | N | | Saccharin | 1 | / | / | N | N | N | Teratogens (T) and non-teratogens (N) was classified by the TI obtained. ## Zebrafish and Dibutyl phthalate (DBP) - * DBP is an environmental endocrine disrupters (EEDs), used primarily as plasticizers to impart flexibility to polyvinylchloride plastics. - DBP disturb Sertoli Cell function, disrupt Sertoli-Germ celll interaction, reduce sperm production. - DBP disturb Leydig Cell function, reduce testosterone. ### Zebrafish embryo exposure of DBP ## Disterb primordial germ cells (PGCs) distrubution ### Conclusion Some of the chemicals induce same or at least similar teratogenic effect in zebrafish and in mammals. * Zebrafish could be a proper candidate to be one of the model organisms in devtox database. ## THANK YOU!